Reg. No. : \square

Question Paper Code : 50781

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

Fourth Semester
Biomedical Engineering
MA 6451 - PROBABILITY AND RANDOM PROCESSES
(Common to Electronics and Communication Engineering/Robotics and Automation Engineering)
(Regulations 2013)
Time : Three Hours
Maximum : 100 Marks

Answer ALL questions
PART-A
(10×2=20 Marks)

1. Write the formula for moment generating function of binomial distribution.
2. Suppose that the duration X in minutes of long distance calls from your home, follows exponential law with p.d.f. $f(x)=\left\{\begin{array}{l}e^{\frac{-x}{5}}, x>0 \\ 0, \text { otherwise }\end{array}\right.$ what is $P(X>5)$?
3. Find the value of k, if $f(x, y)=k(1-x)(1-y)$ in $0<x, y<1$ and $f(x, y)=0$, otherwise, is to be the joint density function.
4. The regression equations are $3 x+2 y=26$ and $6 x+y=31$. Find the means of X and Y .
5. What do you mean by wide sense stationary process?
6. State the postulates of a Poisson process.
7. Prove that $R(\tau)$ is maximum at $\tau=0$.
8. a) If $\{X(t)\}$ is a WSS process and if $Y(t)=\int_{-\infty}^{\infty} h(u) X(t-u) d u$, prove that:
i) $\mathrm{R}_{\mathrm{XY}}(\mathrm{T})=\mathrm{R}_{\mathrm{XX}}(\mathrm{T})$ * $\mathrm{h}(-\mathrm{T})$, where * denotes convolution
ii) $R_{Y Y}(T)=R_{X Y}(T) * h(T)$, where * denotes convolution π
iii) $\mathrm{S}_{\mathrm{XY}}(\omega)=\mathrm{S}_{\mathrm{XX}}(\omega) \mathrm{H}^{*}(\omega), \mathrm{H}^{*}(\omega)$ is the complex conjugate of $\mathrm{H}(\omega)$
iv) $S_{X Y}(\omega)=S_{X X}(\omega)|H(\omega)|^{2}$.
(OR)
b) i) If $\mathrm{X}(\mathrm{t})$ is the input voltage to a circuit and $\mathrm{Y}(\mathrm{t})$ is the output voltage, $\{\mathrm{X}(\mathrm{t})\}$ is a stationary random process with $\mu_{\mathrm{x}}=0$, and $R_{x x}(\tau)=e^{-\alpha \mid \eta}$. Find μ_{y}, $S_{y y}(\omega)$ and $R_{y y}(T)$, if the power transfer function is $H(\omega)=\frac{R}{R+i L \omega}$.
ii) A system has an impulse response $h(t)=e^{-\beta t} U(t)$, find the power spectral density of the output $Y(t)$ corresponding to the input $X(t)$.
3)

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

Fourth Semester
Biomedical Engineering
MA 2261 - PROBABILITY AND RANDOM PROCESSES
(Common to Electronics and Communication Engineering)
(Regulations 2008)
Time : Three Hours
Maximum : 100 Marks
Instruction : Normal distribution table is permitted.
Answer ALL questions
PART - A
(10×2=20 Marks)

1. Classify the following random variables as continuous or discrete
i) Number of incoming calls to your mobile phone on a particular day.
ii) The time that you spend for studies during a day.
2. Under what conditions binomial distribution tends to Poisson distribution?
3. Find the marginal distribution of X and Y from the bivariate probability distribution given below

Y		
X	1	2
1	0.1	0.2
2	0.3	0.4

15. a) If $X(t)$) is a WSS process and if $Y(t)=\int_{-\infty}^{\infty} h(u) X(t-u) d u$ then prove that.
i) $R_{X Y Y}(\tau)=R_{X X X}(\tau) * h(-\tau)$.
ii) $\mathrm{R}_{\mathrm{YY}}(\tau)=\mathrm{R}_{\mathrm{XY}}(\tau) * \mathrm{~h}(\tau)$, where * denotes convolution.
iii) $\mathrm{S}_{\mathrm{XY}}(\omega)=\mathrm{S}_{\mathrm{XX}}(\omega) \mathrm{H}^{*}(\omega)$.
iv) $\left.\mathrm{S}_{\mathrm{YY}}(\omega)=\mathrm{S}_{\mathrm{XX}}(\omega) / \mathrm{H}(\omega)\right)^{2}$.
(OR)
b) The autocorrelation function of the Poisson increment process is given by

$$
R(\tau)=\left\{\begin{array}{cc}
\lambda^{2} & \text { for }|\tau|>\varepsilon \tag{16}\\
\lambda^{2}+\frac{\lambda}{\varepsilon}\left(1-\frac{|\tau|}{\varepsilon}\right) & \text { for }|\tau| \leqslant \varepsilon
\end{array}\right.
$$

prove that its spectral density is given by $S(\omega)=2 \pi \lambda^{2} \delta(\omega)+\frac{4 \lambda \sin ^{2}(\omega \varepsilon / 2)}{\varepsilon^{2} \omega^{2}}$

